首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   88篇
  国内免费   266篇
测绘学   1篇
大气科学   24篇
地球物理   57篇
地质学   713篇
海洋学   83篇
天文学   8篇
综合类   32篇
自然地理   114篇
  2024年   1篇
  2023年   6篇
  2022年   13篇
  2021年   20篇
  2020年   18篇
  2019年   29篇
  2018年   32篇
  2017年   44篇
  2016年   35篇
  2015年   24篇
  2014年   43篇
  2013年   79篇
  2012年   48篇
  2011年   42篇
  2010年   46篇
  2009年   38篇
  2008年   45篇
  2007年   57篇
  2006年   46篇
  2005年   48篇
  2004年   37篇
  2003年   17篇
  2002年   30篇
  2001年   34篇
  2000年   12篇
  1999年   26篇
  1998年   26篇
  1997年   15篇
  1996年   29篇
  1995年   16篇
  1994年   11篇
  1993年   8篇
  1992年   8篇
  1991年   12篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有1032条查询结果,搜索用时 31 毫秒
41.
东昆仑夏日哈木铜镍矿床以赋存110万吨Ni金属成为全球镍床近二十年来最重要的发现之一,也是仅次于金川岩浆铜镍矿床的中国第二大铜镍矿床。矿区发育5个镁铁-超镁铁质岩体,目前仅Ⅰ号镁铁-超镁铁岩体内发现了具有经济价值的超大矿体,110万吨Ni金属均赋存Ⅰ号岩体内;其他4个岩体中仅Ⅱ号岩体发现了矿化,是多种构造体制叠加岩浆活动的结果。调查发现Ⅱ号岩体的主要岩性是辉长岩,LA ICP-MS锆石U-Pb测试获得Ⅱ号岩体辉长岩的成岩年龄为385.2 Ma,比Ⅰ号岩体成岩成矿时代稍年轻,属于早泥盆世岩浆活动的产物。岩浆铜镍矿体多赋存于辉石岩与橄榄岩中,辉长岩内一般无经济价值的矿体存在。在夏日哈木矿区,辉长岩基本是含矿辉石岩及橄榄岩的围岩,辉长岩中所见的铜镍矿化也是后期岩浆活动贯入的表现。结合区域年代学综合分析认为,夏日哈木超大型岩浆铜镍硫化物矿床的形成,是早泥盆世早期岩浆活动于柴达木盆地边缘东昆仑造山带夏日哈木地区具体的成矿表现。目前所发现的Ⅱ号岩体以辉长岩为主,不具备成镍矿良好条件,较难发现有经济价值的铜镍矿体。  相似文献   
42.
The Ni-Co-(PGE) sulfide deposits of the Thompson Nickel Belt (TNB) in Northern Manitoba, Canada are part of the fifth largest nickel camp in the world based on contained nickel; past production from the TNB deposits is 2500 kt Ni. The Thompson Deposit is located on the eastern and southern flanks of the Thompson Dome structure, which is a re-folded nappe structure formed during collision of the Trans-Hudson Orogen with the Canadian Shield at 1.9–1.7 Ga. The Thompson Deposit is almost entirely hosted by P2 member sulfidic metasedimentary rocks of the Paleoproterozoic Ospwagan Group. Variably serpentinised and altered dunites, peridotites and pyroxenites contain disseminated sulfides and have a spatial association with sediment-hosted Ni sulfides which comprise the bulk of the ore types. These rocks formed from rift-related komatiitic magmas that were emplaced at 1.88 Ga, and subsequently deformed by boudinage, thinning, folding, and stacking.Disseminated sulfide mineralization in the large serpentinised peridotite and dunite intrusions that host the Birchtree and Pipe Ni-Co sulfide deposits typically has 4–6 wt% Ni in 100% sulfide. The disseminated sulfides in the less abundant and much smaller boudinaged serpentinised peridotite and dunite bodies associated with the Thompson Deposit have 7–10 wt% Ni in 100% sulfide. The majority of Thompson Mine sulfides are hosted in the P2 member of the Pipe Formation which is a sulfidic schist developed from a shale prololith; the mineralization in the schist includes both low Ni tenor (<1 wt% Ni in sulfide) and barren sulfide (<200 ppm Ni) and a Ni-enriched sulfide with 1–18 wt% Ni in 100% sulfide. The semi-massive and massive sulfide ores show a similar range in Ni tenor to the metasediment-hosted mineralization, but there are discrete populations with maximum Ni tenors of ∼8, 11 and 13 wt% Ni in 100% sulfide. The variations in Ni tenor are related to the Ni/Co ratio (high Ni/Co correlates with high Ni tenor sulfide) and this relationship is produced by the different Ni/Co ratios in sulfides with a range in proportions of pyrrhotite and pentlandite. Geological models of the ore deposit, host rocks, and sulfide geochemical data in three dimensions reveal that the Thompson Deposit forms an anastomosing domain on the south and east flanks of a first order D3 structure which is the Thompson Dome. In detail, a series of second order doubly-plunging folds on the eastern and southern flank control the geometry of the mineral zones. The position of these folds on the flank of the Thompson Dome is a response to the anisotropy of the host rocks during deformation; ultramafic boudins and layers of massive quartzite in ductile metasedimentary rocks control the geometry of the doubly-plunging F3 structures. The envelope of mineralization is almost entirely contained within the P2 member of the Pipe formation, so the deposit is clearly folded by the first order and second order D3 structures. The sulfides with highest Ni tenor (typically >13 wt% Ni in sulfide) define a systematic trend that mirrors the configuration of the second order doubly-plunging F3 structures on the flanks of the Dome. Although moderate to high Ni tenor mineralization is sometimes localized in fold hinges, more typically the highest Ni tenor mineralization is located on the flanks of the fold structures.There is no indication of the mineralogical and geochemical signatures of sedimentary exhalative or hydrothermal processes in the genesis of the Thompson ores. The primary origin of the mineralization is undoubtedly magmatic and this was a critical stage in the development of economic mineralization. Variations in metal tenor in disseminated sulfides contained in ultramafic rock indicate a higher magma/sulfide ratio in the Thompson parental magma relative to Birchtree and Pipe. The variation in Ni tenor of the semi-massive and massive sulfide broadly supports this conclusion, but the variations in metal tenor in the Thompson ores was likely created partly during deformation. The sequence of rocks was modified by burial and loading of the crust (D2 events) to a peak temperature of 750 °C and pressure of 7.5 kbar. The third major phase of deformation (D3) was a sinistral transpression (D3 event) which generated the dome and basin configuration of the TNB. These conditions allowed for progressive deformation and reformation of pyrrhotite and pentlandite into monosulfide solid solution as pressure and temperature increased; this process is termed sulfide kinesis. Separation of the ductile monosulfide solid solution from granular pentlandite would result in an effective separation of Ni during metamorphism, and the monosulfide solid solution would likely be spread out in the stratigraphy to form a broad halo around the main deposit to produce the low Ni tenor sulfide. Reformation of pentlandite and pyrrhotite after the peak D2 event would explain the broad footprint of the mineral system. The effect of the D3 event at lower pressure and temperature would have been to locally redistribute, deform, and repeat the lenses of sulfide.The understanding of the relationships between petrology, stratigraphy, structure, and geochemistry has assisted in formulating a predictive exploration model that has triggered new discoveries to the north and south of the mine, and provides a framework for understanding ore genesis in deformed terrains and the future exploration of the Thompson Nickel Belt.  相似文献   
43.
The Huangshannan magmatic Ni-Cu sulfide deposit is one of a group of Permian magmatic Ni-Cu deposits located in the southern Central Asian Orogenic belt in the Eastern Tianshan, northwest China. It is characterized by elevated Ni tenor (concentrations in recalculated 100% sulfide) in sulfide within ultramafic rocks (9–19 wt%), with values much higher than other deposits in the region. Sulfides of the Huangshannan deposit are composed of pentlandite, chalcopyrite, and pyrrhotite and the host rock is relatively fresh, indicating that the high-Ni tenor is a primary magmatic feature rather than formed by alteration processes. It is shown that sulfides with high-Ni tenor can be generated by sulfide-olivine equilibrium at an oxygen fugacity of QFM +0.5, for magmas containing 450 ppm Ni and 20% olivine. Ores with >10 wt% sulfur have relatively low PGE and Ni tenors compared to other ores, R factor (mass ratio of silicate to sulfide liquid) modeling of Ni indicates that they formed at moderate R values (150–600). Based on this constraint on R values, ores with <10 wt% sulfides in the Huangshannan deposit can be segregated from a similar parental magma with 0.05 ppb Os, 0.023 ppb Ir, and 0.5 ppb Pd at R values between 600 and 3000. This, coupled with the supra-cotectic proportions of sulfide liquid to cumulus silicates in the Huangshannan ores imply mechanical transport and deposition of sulfide liquid in a magma pathway or conduit, in which sulfides must have interacted with large volumes of silicate magma. Platinum and Pd depletion relative to other platinum group elements (PGEs) are observed in fresh and sulfide-rich samples (S > 4.5 wt%). As sulfide-rich samples are also depleted in Cu, and as interstitial sulfides in those samples are physically interconnected at a scale of several cms, the low Pt and Pd anomalies are attributed to solid Pt and Pd phases crystallization and retention with the monosulfide solid solution (MSS) and Cu-rich sulfide liquid percolation during MSS fractionation. This finding indicates that Pt anomalies in sulfide-rich rocks from magmatic Ni-Cu deposits in the Eastern Tianshan are the result of sulfide fractionation rather than a hydrothermal effect. 187Os/188Os(278Ma) values of the lherzolite samples vary from 0.27 to 0.37 and γOs(278Ma) values vary from 110 to 189, indicating significant magma interaction with crustal sulfides, rich in radiogenic Os. Well constrained γOs values and δ34S values (−0.4 to 0.8‰) indicate that crustal contamination occurred at depth before the arrival of the magma in the Huangshannan chamber. Regionally, deposits with high-Ni tenor have not been reported other than the Huangshannan deposit; however, many intrusions with high-Ni contents in olivine are present in NW China, such as the Erhongwa, Poyi and Poshi intrusions. Those intrusions are capable of forming high-Ni tenor sulfides due to olivine-sulfide-silicate equilibrium and relative high-Ni content in parent magma, making them attractive exploration targets.  相似文献   
44.
饱和正冻土水分迁移及冻胀模型研究   总被引:6,自引:0,他引:6  
正冻土在温度梯度大的情况下,冻结锋面快速移动,孔隙水变成冰,造成原位体积膨胀;而通常在天然条件下,温度梯度都不大,水从未冻区向冻结区迁移,在某一个位置引起冰的累积,形成分凝冰。由于此诱发的冻胀要比原位冻胀大很多,因此,建立一个能够模拟土体水分迁移及分凝冰形成过程的冻胀模型尤其重要。基于第2冻胀理论,建立了饱和土体冻胀模型。在模型中,假设冻结缘中单位时间内水分迁移速度为常数,以计算冻结缘内水压力,再根据克拉方程得到冰压力。根据冰压力的大小作为分凝冰形成判据,研究中假设新的分凝冰形成以后,上一层分凝冰停止生长。模型把水分迁移和冻胀速率当作基本的未知量,模拟了与可天然土体冻胀类似的底部无压补水和顶部加压的冻胀情况。通过数值模拟与试验结果进行对比,初步验证模型的可靠性,其研究结果为实际寒区工程的冻胀预测提供参考。  相似文献   
45.
为了研究甘肃北山大山头含铜镍硫化物基性、超基性岩的成矿潜力,通过野外调查和室内综合对比研究,取得如下 认识及成果:(1)大山头岩体侵位于前寒武系中深变质碎屑岩与片麻状花岗岩中,为多期次侵位的杂岩体,早期以中细粒辉 长岩岩基为主,晚期为橄榄苏长辉长岩-二辉橄榄岩相基性-超基性岩,岩体分异明显,橄榄二辉岩全岩铜镍矿化(Cu 含量 0.08%~0.46%,Ni 含量 0.2%~0.37% ):(2)岩体常量和微量元素具岛弧基性超基性岩浆特征(例如岩体亏损高场强元素 Nb, Ta,Ti,Hf 及 Y 和 P,富集大离子亲石元素 Ba,Rb,Th,U,K 及 La 等);(3)磁法异常与岩体地表矿化一致,电法结果显示 岩体深部矿化更好(最大磁场强度值 600nT,视极化率(ηs)显示最大值可达 7.5%~12.1%);(4)岩体岩石地球化学特征与金川、 喀拉通克、红旗岭等相似,与甘肃黑山一致。因此,大山头有望成为储量规模不亚于甘肃黑山的铜镍硫化物矿床。  相似文献   
46.
Internal differentiation processes in a solidifying lava flow were investigated for the Kutsugata lava flow from Rishiri Volcano in northern Japan. In a representative 6-m thick lava flow that was investigated in detail in this study, segregation products darker than the host lavas manifested mainly in the form of pipes (vesicle cylinders) and layers (vesicle sheets), occurring around 0.5–2.3 m and 2.0–4.0 m above the base, respectively. Both the cylinders and sheets are significantly richer in incompatible elements such as TiO2 and K2O than the host lavas, which suggest that these products essentially represent residual melt produced during solidification of the lava flow. Field observation and the geochemical features of the lavas suggest that the vesicle cylinders grew upward from near the base of the flow by continuous feeding of residual melt from the neighboring host lavas to the heads of the cylinders. On the other hand, the vesicle sheets were produced in situ in the solidifying lava flow as fracture veins caused by horizontal compression. The vesicle cylinders have a remarkably higher MgO content (up to 8 wt.%) than the host lava (< 6 wt.%), whereas the vesicle sheets display MgO depletion (as low as 3.5 wt.%). The relatively high MgO content of the vesicle cylinders cannot be explained solely by the mechanical mixing of olivine phenocrysts with the residual melt. It is suggested that the vesicle cylinders were produced by the extraction of olivine-bearing interstitial melt from an augite-plagioclase network in the host lava, whereas the vesicle sheets were formed by the migration of the residual melt from a crystal network consisting of plagioclase, augite, and olivine in the host lava into platy fractures. We infer that this selective crystal fractionation for forming the vesicle cylinders resulted from processes in which abundant vesicles rejected from the upward-migrating floor solidification front prevented olivine crystals from being incorporated into the crystal network in the host lava. The vesicle cylinders are considered to have formed in ∼ 1 day after the lava flow came to rest, while relatively large vesicle sheets (> 1 cm thick) appeared much later (after ∼ 9 days). The formation of these segregation products was essentially complete within 20 days after the lava emplacement.  相似文献   
47.
从现代块状硫化物矿床成矿特征对比角度,总结分析了世界现代海底喷流的块状硫化物成矿堆积,综述了现代海底块状硫化物成矿主要形成于洋壳和岛弧环境的实际观察结果,突出强调了洋壳环境和岛弧或陆壳环境两种成矿环境对成矿类型分类的意义。对上地幔部分熔融岩浆来源与地壳物质可能带入、火山喷发岩浆系列的演化和对热液成矿作用的控制进行了讨论,对比分析了岩浆流体对成矿的重要贡献和控制作用,以及成矿热液循环体系形成的条件和模式。  相似文献   
48.
The gold contents of 59 samples of mantle-derived xenoliths, along with 85 samples of sulfide assem-blages in them, of Cenozoic basalt from eight districts in eastern China are analyzed. The gold contents of mantle xenoliths usually fall in the range of 10-9―10-8, whereas those of the sulfide assemblages fall in the range of 10-4―10-2. This implies that the latter are several hundred thousand times higher than the former, and thus that Au in the mantle is concentrated mostly in sulfide assemblages. Gold con-tents of both mantle-derived xenoliths and sulfide assemblages in them are inhomogeneous spatially, but their distribution rules are similar. Except the samples from Hainan Province, either the mantle xenoliths with high gold content or sulfide assemblages of the mantle-derived xenoliths with high gold content are distributed mostly on the north and south margins of the North China platform (Hannuoba of Hebei Province and Linqu, Changle of Shandong Province), corresponding to districts with concen-trated gold deposits in northwest Hebei Province and Jiaodong Peninsula of Shandong Province. This may reflect the correlativity in age, nature and composition between the continental crust and the un-derlying lithospheric mantle. The underlying lithospheric mantle of the North China platform is an an-cient gold-rich lithospheric mantle. The gold-rich lithospheric mantle may be the material source of later activation, enrichment, transportation and mineralization of gold by auriferous CO2 mantle fluids.  相似文献   
49.
Analyses of trace elements of the Lower Palaeozoic carbonate rock strata in Beijing show that the contents of As, Hg, F increase from primary carbonate rocks to weathered carbonate rocks and from primary carbonate rocks to the soil coexisting with carbonate rocks, but the distribution regularity of S is not obvious. In the whole weathered stages, the sorption of As is mainly affected by Fe2O3. In soil Fe2O3 is also the main affecting factor of Hg enrichment. The main existing forms of Hg in primary carbonate rocks should simply be physical adsorption, coprecipitation and false isomorphous form between surface of carbonate rock and Hg. In soil the enrichment of F has little relationship with sul-fides and Fe2O3. In primary carbonate rocks, F is mainly absorbed by sulfides and clay minerals, etc. Weathered samples have closer genetic relationships with primary carbonate rocks. This also implies that weathered carbonate rocks have the close existing forms to that of primary carbonate rocks. In primary carbonate rocks FeS2 and FeS are the main forms of S, and sulfides have fixation effect on some heavy metals, whereas in weathered carbonate rocks and soil the fixation effect is weakened.  相似文献   
50.
The inner shelves of active, energetic continental margins are frequently defined as regions of sediment segregation and fine-sediment bypassing. The Waiapu River, North Island, New Zealand presents an opportunity to study fine-sediment segregation and strata formation in a spatially constrained, highly energetic, aggradational setting, with one of the highest sediment yields on earth. We present evidence that the inner shelf of the Waiapu River plays a significant role in both the fate of fine-grained (<63 μm) riverine sediments and the formation of continental margin stratigraphy. Results obtained from high-resolution interferometric bathymetry and high-frequency seismic mapping ground-truthed by cores show significant stratigraphic spatial variation preserved on the Waiapu inner shelf. This spatial variation is likely controlled by spatially-distinct sediment deposition and resuspension processes as well as antecedent geology. Two distinct depositional regions are interpreted as: (1) surface plume-dominated with partial resuspension, characterized by acoustically transparent seismic reflection profiles and muddy sands; and (2) event-layer dominated, characterized by thickly laminated sediments. A modern-day bathymetric low overlying an observed paleochannel may influence the fate of hyperpycnal flows transiting the shelf via bathymetric steering. Fining-upward sequences found over the entire shelf are interpreted to represent deforestation-induced sedimentation that has overwhelmed the ability of the energetic system to resuspend and segregate fine sediments. We conclude that the primary control on strata formation on the inner shelf of the Waiapu River is local sediment supply.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号